RhoGTPases, actomyosin signaling and regulation of the epithelial Apical Junctional Complex.
نویسندگان
چکیده
Epithelial cells form regulated and selective barriers between distinct tissue compartments. The Apical Junctional Complex (AJC) consisting of the tight junction (TJ) and adherens junction (AJ) control epithelial homeostasis, paracellular permeability and barrier properties. The AJC is composed of mutliprotein complexes consisting of transmembrane proteins that affiliate with an underlying perijunctional F-actin myosin ring through cytoplasmic scaffold proteins. AJC protein associations with the apical actin-myosin cytoskeleton are tightly controlled by a number of signaling proteins including the Rho family of GTPases that orchestrate junctional biology, epithelial homeostasis and barrier function. This review highlights the vital relationship of Rho GTPases and AJCs in controlling the epithelial barrier. The pathophysiologic relationship of Rho GTPases, AJC, apical actomyosin cytoskeleton and epithelial barrier function is discussed.
منابع مشابه
Shroom regulates epithelial cell shape via the apical positioning of an actomyosin network.
The actin-binding protein Shroom is essential for neural tube morphogenesis in multiple vertebrate organisms, indicating its function is evolutionarily conserved. Shroom facilitates neurulation by regulating the morphology of neurepithelial cells. Shroom localizes to the apical tip of adherens junctions of neural ectoderm cells in vivo and to the apical junctional complex (AJC) in MDCK cells. I...
متن کاملRegulation of epithelial apical junctional complex by Rho family GTPases.
The apical junctional complex (AJC), encompassing the tight junction (TJ) and adherens junction (AJ) plays a vital role in regulating epithelial cell differentiation and barrier function of simple epithelia. Both AJ and TJ are comprised of multiprotein complexes consisting of transmembrane proteins, which interact with the underlying cytoskeleton via cytoplasmic scaffold proteins. These interac...
متن کاملMyosin II promotes the anisotropic loss of the apical domain during Drosophila neuroblast ingression
Epithelial-mesenchymal transitions play key roles in development and cancer and entail the loss of epithelial polarity and cell adhesion. In this study, we use quantitative live imaging of ingressing neuroblasts (NBs) in Drosophila melanogaster embryos to assess apical domain loss and junctional disassembly. Ingression is independent of the Snail family of transcriptional repressors and down-re...
متن کاملDisruption of the Cdc42/Par6/aPKC or Dlg/Scrib/Lgl Polarity Complex Promotes Epithelial Proliferation via Overlapping Mechanisms
The establishment and maintenance of apical-basal polarity is a defining characteristic and essential feature of functioning epithelia. Apical-basal polarity (ABP) proteins are also tumor suppressors that are targeted for disruption by oncogenic viruses and are commonly mutated in human carcinomas. Disruption of these ABP proteins is an early event in cancer development that results in increase...
متن کاملRab family small G proteins in regulation of epithelial apical junctions.
Tight junctions (TJs) and adherens junctions (AJs) comprise epithelial apical junctions that adhere neighboring epithelial cells and determine tissue organization. They are highly dynamic structures that undergo continuous remodeling during physiological morphogenesis and under pathological conditions. The assembly and disassembly of epithelial apical junctions is regulated by the interplay bet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Seminars in cell & developmental biology
دوره 36 شماره
صفحات -
تاریخ انتشار 2014